Pattern formation in neural dynamical systems governed by mutually Hamiltonian and gradient vector field structures
نویسندگان
چکیده
We analyze dynamical systems of general form possessing gradient (symmetric) and Hamiltonian (antisymmetric) flow parts. The relevance of such systems to self-organizing processes is discussed. Coherent structure formation and related gradient flows on matrix Grassmann type manifolds are considered. The corresponding graph model associated with the partition swap neighborhood problem is studied. The criterion for emerging gradient and Hamiltonian flows is established. As an example we consider nonlinear dynamics in a neuron network system described by a simulative vector field. A simple criterion was written in order to establish conditions for the formation of an oscillatory pattern in a model neural system under consideration.
منابع مشابه
Conjugate gradient neural network in prediction of clay behavior and parameters sensitivities
The use of artificial neural networks has increased in many areas of engineering. In particular, this method has been applied to many geotechnical engineering problems and demonstrated some degree of success. A review of the literature reveals that it has been used successfully in modeling soil behavior, site characterization, earth retaining structures, settlement of structures, slope stabilit...
متن کاملThe properties of quasispecies dynamics in molecular evolution
We consider the general properties of the quasispecies dynamical system from the standpoint of its evolution and stability. Vector field analysis as well as spectral properties of such system has been studied. Mathematical modelling of the system under consideration has been performed. keywords: quasispecies dynamics, Hamiltonian systems, gradient dynamical system, biological evolution, complex...
متن کاملStability of Nearly-integrable Systems with dissipation
We study the stability of a vector field associated to a nearly–integrable Hamiltonian dynamical system to which a dissipation is added. Such a system is governed by two parameters, named the perturbing and dissipative parameters, and it depends on a drift function. Assuming that the frequency of motion satisfies some resonance assumption, we investigate the stability of the dynamics, and preci...
متن کامل2 5 O ct 2 00 3 Replicator dynamical systems and their gradient and Hamiltonian properties
We consider the general properties of the replicator dynamical system from the standpoint of its evolution and stability. Vector field analysis as well as spectral properties of such system has been studied. Lyaponuv function for investigation of system evolution has been proposed. The generalization of the replicator dynamics for the case of multi-agent systems has been introduced. We propose ...
متن کاملNew conditions on ground state solutions for Hamiltonian elliptic systems with gradient terms
This paper is concerned with the following elliptic system:$$ left{ begin{array}{ll} -triangle u + b(x)nabla u + V(x)u=g(x, v), -triangle v - b(x)nabla v + V(x)v=f(x, u), end{array} right. $$ for $x in {R}^{N}$, where $V $, $b$ and $W$ are 1-periodic in $x$, and $f(x,t)$, $g(x,t)$ are super-quadratic. In this paper, we give a new technique to show the boundedness of Cerami sequences and estab...
متن کامل